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ABSTRACT

We present an approach for remote operation of instru-
ments in the Internet environment. We have applied this
approach to in-situ electron microscopy experiments that
require dynamic interaction with the specimen under ob-
servation, as it is excited with external stimuli, i.e., tem-
perature variation, EM �eld variation, etc. The dynamic
operations include control of the sample's position and ori-
entation under the electron beam, the illumination condi-
tions and focus, etc. Remote control via wide area net-
works like the Internet that do not o�er real time data
and command delivery guarantees is not practical for the
�nely tuned adjustments that dynamic studies require. We
suggest that an e�ective approach to remote operation for
this class of dynamic control applications must involve au-
tomated control operations performed near the instrument
in order to eliminate the wide area network real-time de-
livery requirement. Our approach to this problem is based
on advanced computer vision algorithms that permit in-
strumentation adjustments to be made in response to in-
formation extracted from the video signal generated by the
microscope imaging system. We have determined the type
of servo loops needed to enable remote operation and col-
laboration, and have introduced a novel partitioning of the
control architecture for implementing this approach. In
this partitioning, the low frequency servo loop functions
that require direct human interaction are performed over
the wide area network, and those functions that require
low latency control are performed locally using the auto-
mated techniques. This approach hides the latencies in the
wide area network and permits e�ective remote operation.
The result is telepresence that provides the illusion of close
geographical proximity for in-situ studies. Our testbed is a
1.5 MeV transmission electron microscope, which can now
be used on-line via the global Internet.

1 Introduction

The current trend in applying multimedia capabilities to
laboratory environments aims at the routine use of video
image sequences over a wide area network. The issues here
are the ability to collect, store, compress, and display video
sequences for users who each might have critical bandwidth
requirements for a �nite resource [10]. The next natural
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evolution of multimedia systems is to provide the compu-
tational framework to analyze images, extract meaningful
information from a video sequence in real-time, and pro-
vide the ability to manipulate experiments based on the
content of the video sequence, over the wide area network.
One such application of the approach is a system for re-
mote operation of in-situ microscopy. Our testbed is a 1.5
million electron volt (MeV) transmission electron micro-
scope (HVEM), shown in �gure 1, that is operated by the
National Center for Electron Microscopy.

In-situ microscopy refers to a class of scienti�c experi-
ments in which a specimen is excited by external stimuli.
The stimuli could be in the form of temperature variation
or stress in the sample environment The interaction of the
external stimuli and specimen can result in sample drift,
shape deformation, changes in object localization, changes
in focus, or simply anomalous specimen responses to nor-
mal operating conditions. Currently, during the in-situ ex-
periments the operator must make constant adjustments
to the instrument to maintain depth of focus and compen-
sate for various drifts. These are labor intensive and error
prone tasks {requiring a high bandwidth video link to the
operator{ that are nearly impossible to do in wide area
networks due to limited network bandwidth. Although re-
searchers have built telepresence systems for electron mi-
croscopy, these systems do not address the more complex
issues of in-situ microscopy. The novelty of our system
lies in the approach that uses automation techniques for
on-line quantitative analysis, and manipulation and com-
pensation of the necessary experiment parameters. Thus,
by relieving the operator of having to do the dynamic ad-
justment of the experimental setup, remote collaboration
and remote operation of the in-situ studies over a wide area
network are made possible. This is accomplished through
the use of advanced computer vision techniques to provide
automation for microscopy applications [14, 15]. From this
perspective, we have de�ned and developed a series of com-
putational techniques that are necessary for remote in-situ
applications. These include 1) image compression, 2) aut-
ofocusing, 3) self calibration, 4) object detection, 5) track-
ing using either high level or low level features, and 6)
servo-loop control mechanisms. These functions are im-
plemented over a distributed client-server software archi-
tecture for better throughput, scalability and modularity.

In the next sections, we outline the approach and com-
putational platform for remote operation, together with
some of the details of the instrumentation of the HVEM.
In section 4, we summarize the algorithms that are used to
realize the functions for remote in-situ experiments. Then
in section 5, descriptions of the software architecture and
the performance parameters are outlined. Finally, we con-
clude with the limitations of the system and directions of



Figure 1: The high voltage electron microscope at NCEM

the future e�orts.

2 Approach

Our general approach to the problem of remote control of
dynamic experiments is to separate the basic human inter-
action of establishing control system parameters like gross
positioning, identifying objects of interest, etc. (which do
not require low latency communication) from the control
servoing that performs operations like auto-focus, object
detection, continuous �ne positioning due to thermal drift,
etc., which do require low latency communication.

The human interaction operations, together with the
supporting human communication involving video and au-
dio teleconferencing, can easily be performed in a wide area
network environment [9, 12].

The dynamic control operations must occur in a much
more controlled environment where the control operation
and the monitored response to the control or stimuli have
to be coupled by low latency communication that is not
possible in wide area networks. For these operations, we
use computer vision techniques to provide the monitor-
ing of the response to the control operations by extracting
position and shape information from the video imaging
output of the microscope.

This image content analysis, and the dynamic control
resulting from the information that is fed back to the con-
trol system, is automated and performed in a local envi-
ronment. That is, the computers that acquire and analyze
the video images and then communicate with the control
system are all connected by fast local area networks. The
approach is illustrated in �gure 2.

3 Computational platform

The computational platform that implements the auto-
mated control in the local environment must be able to
acquire images, process them at the required bandwidth,
and manipulate a large number of functions for operat-
ing the HVEM. Our strategy for partitioning the required
operations is based partly on design philosophy, i.e., scala-
bility, modularity, and cost, and partly on the availability
of data acquisition components (DAC) for various hard-
ware platforms. For these reasons, a Sun Microsystems
workstation is used for image capture, a Digital Equipment
Corporation (DEC) symmetric multiprocessor is used for
CPU intensive operations, and a PC is used for data acqui-
sition. Physically, the Sun and PC are operating near the
microscope, while the DEC is located in another building
of the Laboratory, but is still connected via a LAN. The
Sun and DEC are on a FDDI ring (100 Mb/s) for high

server for
operating control

equipment

video to
network
interface

Video stream analysis
(e.g. for auto focus and

shape detection)

Local Environment

“set point”
information
for “coarse”

control

gateway

Remote
Control

Environment

compressed
video for

monitoring

human
interaction

stage
drive

video
imaging

microscope

unpredictable wide area network

Figure 2: Remote operation architecture

speed image transfer as shown in �gure 3. In this con�gu-
ration, the local Sun workstation is mainly used for testing
and on-line quantitative analysis by local users.
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Figure 3: Computational infrastructure for remote in-situ
microscopy. The italic names specify the servers that run
on each platform.

3.1 Microscope Instrumentation

The HV electron microscope possesses a large number of
knobs and switches, not all of which are necessary or appro-
priate for teleoperation. We have placed those functions
that allow safe remote operation of the instrument under
computer control. For example, control of the �lament
current{used for generating electrons{is a feature that is
not o�ered to remote users because a novice operator (or
intruder) could accidentally damage the �lament despite
the microscope's safety features. Critical functions can be
adjusted only by the local operator. The remotely oper-
ated functions have limit switches to prevent remote users
from going beyond safe boundaries.

Teleoperation over the wide area network is achieved
with 3 DAC boards and one stepper motor controller board
that are integrated into the PC. Current remote functions
include translating a specimen in the X and Y directions,
tilting the specimen, altering focus, and controlling the
temperature. Other functionalities1 to be added in the
near future include starting a session, ending a session,

1Will be Supported by the existing DAC boards.



altering the magni�cation, changing the beam size, shifting
the beam, controlling the position of the aperture, and
generating a high resolution micrograph.

4 Computational techniques

In the context of remote in-situ microscopy, the system
must provide the look and feel available to the local opera-
tor, and hide the inherent latency in the wide area network.
The look and feel is achieved through an appropriate user
interface. The hiding of the network latency is achieved
through visual servoing. Visual servoing is the process of
interpreting the video data and manipulating various con-
trol mechanisms based on the image content. We have
developed a collection of computer codes for image inter-
pretation that can be used for closing the servo-loop in the
local area network. These include image compression, aut-
ofocusing, thermal drift correction in the absence of known
geometric shape features, self calibration, object detection
and tracking, and close loop control.

4.1 Image compression and autofocusing

Both image compression and autofocusing use the wavelet
transform as their underlying principle. We use
Daubechies kernels [8] that are simple, orthogonal, highly
localized, and separable for two dimensional processing.
The main advantage of the wavelet transform is that it can
represent local feature activities at multiple scales through
spatial decimation. During image compression, the low or-
der wavelet coe�cients are ignored and the remaining ones
are encoded in blocks of 16-by-16 pixels. The remote user
has full control over what percentage of wavelet coe�cients
are used for compression. We also, provide delta encoding
as another option for image compression. The approach
is similar to DPCM (di�erential pulse code modulation);
however, certain artifacts due to binary delta function of
the DPCM are inhibited.

Autofocusing has two modes of operation: initialization
and run-time.2

The goodness of the focus is measured by the sum of
the wavelet coe�cients. During the initialization {with the
aperture in the \out" position{ we search for a lens current
that minimizes the sum of the wavelet coe�cients. This
corresponds to a search for a at �eld, i.e., minimum con-
trast. And during the run-time {with the aperture in the
\in" position{ we search for a lens current that maximizes
the sum of the wavelet coe�cients. This corresponds to
a search for focal position when highly di�racted compo-
nents of the beam are blocked by the objective aperture.
This is the same focusing protocol that microscopists use
for transmission electron microscopy. The di�erence be-
tween the initialization and run-time mode is based on
the range of currents that are tested for optimum focus
position. During the initialization mode, the best focus
position is obtained through a binary search over a large
range of current values. At run-time {as the specimen is
heated{ small adjustments are made in the focal position
to compensate for 3D changes of the precipitate position.3

4.2 Drift control and self calibration

Thermal drift control and self calibration use the optical
ow �eld estimation as their undelaying principle. Drift
control involves motion estimation, which is a necessary
component of �xing on a moving object. Once the motion
between consecutive frames is known, the stage assembly

2The focus is adjusted by a 16-bit D/A converter that controls
the lens current.

3Precipitates are the principal objects of the in-situ experiments,
and the foil carrying the precipitate buckles under heat stress.

where the object resides, is re-positioned to compensate
for the motion. In retrospect, the motion corresponds to
a continuous ow of the image world across the retina and
serves as an underlying perceptual cue for higher level cog-
nitive processes. From a computational perspective, the
ow is essentially the instantaneous velocity of each pixel
in the image [2, 3, 4]. The general solution to the velocity
�eld is inherently under-constrained because the number
of equations that de�ne the ow �eld variables is insu�-
cient. However, by exploiting the nature of the ow �eld
in the image, or by using an appropriate bank of �lters,
a constrained or over-constrained system of equations can
be constructed. In the case of thermal drift during in-situ
electron microscopy, the nature of the global motion pro-
vides the mechanism for constraining the ow equations.
This constraint is expressed by the fact that the motion be-
tween consecutive frames is a�ne. Hence, a least-squares
solution with respect to the parameters of the a�ne trans-
form can be constructed. Our current implementation runs
at 4 Hz on the DEC multiprocessor, which is su�cient for
maintaining thermal stability for an in-situ electron micro-
scope. The details of this technique are provided in Ap-
pendix A, and an example of motion estimation is shown
in �gure 4.

(a) (b)

(c) (d)

Figure 4: Motion estimation by optical ow �eld: (a) frame
1; (b) frame 2; (c) raw di�erence; (d) raw di�erence after
applying the computed a�ne transform.

The estimation of the ow �eld is also used for self-
calibration. The sample position is controlled with an XY
stepper motor controller. Hence, it is necessary to map the
pixel size as a function of magni�cation into the number
of steps in the sample positioning system. This is accom-
plished by having the stepper motor make a controlled
motion{as a function of magni�cation{and computing the
ow �eld from two consecutive frames.

4.3 Detection and Tracking

The main objective for the in-situ microscopy experiments
that are being addressed by this work is to observe the



change in the shape of precipitates4 as the temperature is
increased and decreased. We have developed techniques
for detecting these precipitates, tracking them, and then
use the result of tracking to correct for thermal drift. It
turns out that precipitates have convex geometrical rep-
resentations that may also satisfy other constraints such
as parallel or circular symmetries. The observed images
are generally noisy, have poor contrast, and, depending on
the position of the electron beam and the foil angle, su�er
from shading artifacts. We have recently developed a tech-
nique for detecting convex objects from the scene based
on the perceptual grouping principles [5, 11, 13, 15, 17].
The approach relies on grouping line segments {obtained
from Canny's edge detector [7]{ to form convex sets. This
is achieved through an e�cient global convexity test on
groups of line segments in conjunction with a dynamic
programming search strategy [15]. An example of convex
precipitate and convex shape detection is shown in Figure
5.

(a) (b)

Figure 5: Automated detection of a convex precipitate:
(a) original image with edges overlaid; (b) detected convex
sets.

The detection system provides a coarse description of
the precipitate in the form of bounding polygons. This de-
scription is then re�ned and tracked in subsequent frames
using an architecture that was discussed in our recent pa-
per [14]. In this context, detection of precipitates occurs
only in the �rst frame for the purpose of initialization. The
contour re�nement algorithm 5 uses a cost function that is
optimized through dynamic programming. In this context,
both detection and tracking use dynamic programming at
di�erent scale of hierarchy. The cost function encodes the
desirable properties of the re�ned contour in terms of high
and low level feature activities. The low level features re-
fer to pixel level information, such as local edge magnitude
and direction. In our system the high level constraints, de-
rived from the bounding polygon, a�ect the contour re�ne-
ment in two ways. These include geometric constraint and
the scope of the search. This is accomplished by smoothing
the initial polygon with a Gaussian kernel and bounding
the re�ned contour to lie in a small neighborhood as de-
�ned by the normal lines to the smooth curve. The ratio-
nale for Gaussian smoothing is that the bounded polygon is
not smooth and the normal lines may not intersect the ac-
tual boundary of the precipitate. However, by smoothing
the bounding polygon, the normal lines scan the precipi-
tate along its real boundary smoothly. The details of the
technique are summarized in appendix B.

4Alloys of germanium or lead are used in our experiments.
5In our system, the functionality of re�nement and tracking is

achieved with the same algorithm.

An example of tracking of precipitate during the heat-
ing and cooling cycle is shown in Figure 6. Note that the
precipitate becomes round and then facets as the temper-
ature is increased and then decreased. We use a multi-
grid implementation of the above algorithm for maximum
speed up and higher tolerance for large motion. The algo-
rithm has performed well in the presense of shading, noise,
nonuniform illumination, and reduced contrast. The sys-
tem automatically tracks the shape, controls the drift, and
hides the network latencies from the remote user. The drift
control is based on tracking and compensating for the cen-
troid of the contour. This is shown in �gure 7, where the
centroid is shown with a cross-hair on the reconstructed
image, and the direction of the motion is shown with an
arrow. In addition to the topological changes in the shape,
during the heating and cooling experiment, thermal drift
reverses its direction as well, which is also reected in the
�gure.

(a) (b)

Figure 6: Tracking of a deformable precipitate during
in-situ microscopy quanti�es its shrinkage rate and how
it facets: (a) Tracking of the precipitate during heating
phase; (b) Tracking of the precipitate during the cooling
phase.

4.4 Servo control

The novelty of the servo loop mechanism is twofold. These
include 1) the architecture for servicing the local and and
remote requests, and 2) the use of statistical techniques
for close loop servo control. Manipulation of the micro-
scope functions may be initiated either from remote user
under manual control, or from the tracking algorithms de-
scribed above. In other words, coarse manipulation of the
microscope is performed over the WAN, while the re�ned
and predictable manipulation is performed over the LAN.
The stage-server {running on the DEC platform{ acts as a
switch to arbitrate between local versus remote requests.
Furthermore, by limiting the remote client interaction to
one computational platform, we have limited the user au-
thentication problem to that platform only.

The second component of our work for closing the servo
loop is based on the fact that the motion of precipitate is
smooth. We use a Kalman �lter model to predict motion
parameters from noisy measurements. Kalman �ltering
has been used extensively for smoothing, �ltering, and pre-
diction as reported in the literature [6, 18]. In general, the
model provides smooth compensation for drift and shape
tracking coupled with high tolerance for larger speed. Our
implementation uses position and velocity to represent the
internal state of the precipitate. In this context, the model
is used to predict the trajectory of the motion. As a re-
sult, instead of making incremental correction to the XY
stage platform, we place the stepper controller at a con-
stant speed in the direction opposite to the thermal drift.



(a)

(b)

(c)

Figure 7: Tracking and compensating for drift during heat-
ing and cooling cycles. Note that direction of drift is re-
versed as the specimen is cooled: (a) Precipitate is initially
faceted as it is heated. (b) Precipitate becomes round at
high temperature and thermal drift reverses direction as
the specimen is cooled. (c) Precipitate becomes faceted
again at low temperature.

The speed is then re�ned at the tracker sampling inter-
val. The detail of the Kalman �ltering model is given in
Appendix C.

5 Software architecture

The software architecture follows a distributed client-
server model for scalability, performance, and modular-
ity. There are four servers that can interact with each
other in the architecture shown in �gure 3. These are
the i) video-server, ii) motion-server, iii) stage-server, and
iv) DAC-server. The video-server {running on the Sun{
captures images and transfer them in their entirely or par-
tially to the motion-server. The motion-server {running
on the DEC{ manages all the image analysis and servo-
ing. These modules are executed asynchronously and use
a threads programming paradigm for parallel decomposi-
tion. The stage-server -running on the DEC{ handles all
the manual interaction between the remote user and the
electron microscope, i.e., changing magni�cation, shifting
the beam, etc. The DAC-server {running on the PC{ reads
and writes into the data acquisition components for a de-
sired function. The DAC-server uses remote procedure
calls for communication and the remaining servers use data
streams through sockets for minimum delay. We now give
two examples of the dynamics aspects of the motion-server.

The �rst example is self-calibration. The details are
shown in �gure 8, where the interaction between di�erent
computational platforms is shown. The steps are as fol-
lows: 1) the remote client makes a request for self calibra-
tion; 2) the request is transferred to the motion-server; 3)
the motion-server requests a frame from the video-server;
4) the video-server sends an image to the motion-server;
5) the motion-server requests a translation from the stage-
server; and 6,7) the motion-server requests another frame
from the video-server. Self-calibration involves solving a
linear system of equations that provide a mapping between
the pixel size and the corresponding number of stage steps.
This value is retained for subsequent drift corrections.
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REMOTE
CLIENT

1 2
3 4

56 7

WAN

(a)

Figure 8: State diagram for self-calibration.

A critical component of the system is in the design of
the motion-server. This server has four threads that run
asynchronously as shown in �gure 9. The stage-thread
handles all the interaction with the stage-server, and it
has been isolated for modularity and higher throughput.
Average time for most interaction with the PC is about
7ms. The tracking thread operates at 5-8 Hz depending
to the size of the precipitate, and runs with a concurrency
of two. The compression-thread runs at 1.4 Hz over the
shared data, and the focus-thread runs on a single thread
over the target region when the tracking thread is inactive.
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Figure 9: State diagram for motion-server indicates four
distinct threads that run asynchronously.

6 Conclusion

An approach and implementation for telepresence for in-
situ microscopy is outlined. At the macro level, the main
bene�t of the proposed e�ort is the increased utilization of
a sophisticated instrument that has restricted access due
to its sensitive components and demand for operator skills.
Secondary bene�ts include a reduction in cost associated
with conducting individual experiments and an increased
ability for experimenters to collaborate. At the micro level,
the bene�ts include providing novel generic techniques for
1) manipulation of real-time video and 2) servo techniques
for dynamic handling of video sequences {tools essential
for real-time collaborative activities. The testbed for our
experiment has been a 1.5 MeV Transmission Electron Mi-
croscope that is primary used for in-situ studies.

There are several limitations in the exiting architecture
and algorithms. The tracking technique can be confused in
the presense of artifacts such as bend contours, which are
manifestation of stress {as a result of heat{ on the speci-
men. The architecture of �gure 9 is client driven, and as
a result, it will not scale well to multiple users. Finally,
there is no authentication built in to the current gateway,
which must be an integral part of any remote instrumen-
tation. These are current topics of our research, and new
results will be shortly demonstrated in near future.

A Optical ow equations

In this section, the details of the optical ow algorithm
with the a�ne constraint is summarized. Let the image at
time t+�t be de�ned as:

f(x+�x;y+�y; t+�t) = f(x; y; t)+
@f

@x
dx+

@f

@y
dy+

@f

@t
dt

(1)
With the brightness constancy assumption and some

algebraic manipulation, we have

�
@f

@t
= fxU + fyV = (rI)T �

�
U
V

�
(2)

L(i)

L(j)

Normal line to the
smooth polygon

A section of the
smooth polygon

Figure 10: Possible paths for each point on a normal line
segment

Where fx and fy correspond to the spatial image gra-
dient in the x and y directions. U and V correspond to
the velocity components along each axis. Constraining the
ow equation into the a�ne motion of

U(x; y) = a1 + a2x+ a3y
V (x; y) = a3 + a4x+ a5y

(3)

We arrive at a well de�ned system of equations that is
solved using the gradient descent method.

E(@a) =
X
x

�
�I + (rI)T �

�
U
V

��2
(4)

In our implementation, we use a pyramid representation
of the data for the coarse-to-�ne motion estimation. The
main advantages include estimation of large shifts in the
image plane, coupled with higher computational through-
put.

B Contour re�nement

In this section, the details of contour re�nement and track-
ing is covered. Conceptually, each point on the re�ned con-
tour should have high gradient and good continuity with
both the low and high level features. This is reected in
the cost function in terms of making a decision for a partic-
ular path. The cost function indicates the accumulation of
making a decision to link two points from two consecutive
normal line segments as shown in Figure 10. Let:

1. gi be the gradient magnitude for a point pi on line
Li,

2. �i be the local edge direction at location pi. We de�ne
the local edge direction as the direction that is normal
to the direction of maximum rate of change of the
local gradient,

3. ��ij be the di�erence between the direction of gradi-
ent for points pi and pj ,

4. i be the angular di�erence between local edge di-
rection and local direction of high level constraint.
This is obtained by representing a local segment of
the high level constraint, expressed by the smooth
polygon, as a vector, and imposing that this vector
should be co-directional with the local edge direction
along the corresponding normal line.

5. �ij be the angle between the local edge direction at
point pi and the vector connecting point pi to pj,

6. wij be the distance between points pi and pj located
on two consecutive normal line segments, and



7. �ij be the directional deviation between two consec-
utive points de�ned as MAX (��ij ; �ij).

We formulate the cost function in such a way that the gra-
dient is maximum, directional di�erences are small and the
deviation for a particular path from the bounding polygon
(high level constraint) is also small. In other words, the
desired path should maximize the following cost function:

MAXi;j;k

X
k

X
i

X
j

1

wij

gie
�tan(


i

s
) cos (�ij) (5)

where k is the length of the contour, i and j are the pixel
locations on normal line to the smooth polygon, and s is
a parameter that controls the amount of deviation from
the high level contour (it is set to \2" in our program).

This formulation indicates that: i) when i = �,6 the lo-
cal cost function goes to zero, i.e., the local edge direction
has an opposite direction to the direction of the smooth
curve from the high level constraints, ii) if �ij >

�

2
, then

the local cost will be negative and this particular sub-path
will be inhibitive in the search process, and iii) by express-
ing the cost function as a product of internal and external
forces, as opposed to the sum, we have eliminated weight-
ing coe�cients. The above cost function is optimized with
the dynamic programming principle [1, 16, 14].

C Kalman model

The state space representation of the system is as follows:

X(k+ 1) = AX(k) + nx(k)

y(k) = CX(k) + ny(k) (6)

Where X and y correspond to the state and observation
vector, nx and ny are noise vectors, and A and C are
constant matrices. The state vector consist of position
and velocity components. In this context, the above set of
equations can be rewritten as:

x(k+ 1) = x(k) + v(k) + nx(k)

v(k+ 1) = v(k) + nv(k)

y(k) = x(k) + ny(k) (7)

Then, the �lter equations will be:

Gain : K(k+ 1) =

P (k+ 1jk)CT [CP (k+ 1jk)CT +R]�1 (8)

Where P (k+ 1jk) =

AP (kjk)AT +Q� (9)

Update : X̂(k+ 1jk+ 1) =

X̂(k+ 1jk)�K(k+ 1)[CX̂(k + 1jk)� y(k + 1)]

P (k+ 1jk + 1) =

(I �K(k+ 1)C)P (k + 1jk) (10)
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